Math 304 (Spring 2015) - Homework 2

Problem 1.

Suppose $A=\left(\begin{array}{ccc}1 & 3 & 4 \\ 0 & 2 & 5 \\ 1 & -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & 4 & 1 \\ -2 & 3 & 1 \\ 2 & 0 & 4\end{array}\right)$. Compute

$$
(a) \cdot A+2 B, \quad(b) \cdot A B, \quad(c) \cdot B A, \quad(d) \cdot(A B)^{T} .
$$

Problem 2.

Given $A=\left(\begin{array}{cc}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$, compute A^{2}, A^{3}, A^{4} and A^{5}. Recall that for any natural number k,

$$
A^{k}=\underbrace{A A \cdots A}_{k \text { times }}
$$

Problem 3.

Determine whether each of the following matrices has an inverse or not. If yes, find the inverse.
(a) $\left(\begin{array}{ccc}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3\end{array}\right)$

Problem 4.

Solve the following linear system

$$
\left\{\begin{array}{r}
x_{1}+x_{3}=1 \\
3 x_{1}+3 x_{2}+4 x_{3}=2 \\
2 x_{1}+2 x_{2}+3 x_{3}=1
\end{array}\right.
$$

Could you use part (c) of the previous problem to solve the system?

Problem 5.

We know that if A and B are nonsingular, then $A B$ is also nonsingular. However, in general, the sum of two nonsingular matrices can be either nonsingular or singular.
(1) Find examples of (2×2) matrices A and B such that A and B are nonsingular, but $A+B$ is singular.
(2) Find examples of (2×2) matrices A and B such that A and B are nonsingular, and $A+B$ is also nonsingular, but $(A+B)^{-1} \neq A^{-1}+B^{-1}$.

